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Abstract 

A linear programming model is used to examine the impact of carbon taxes on the optimal 

generation mix in the Alberta electrical system. The model permits decommissioning of 

generating assets with high carbon dioxide emissions and investment in new gas-fired, wind 

and, in some scenarios, nuclear capacity. Although there is an intertie from Alberta to the U.S., 

the focus is on the connection to British Columbia as wind energy can potentially be stored in 

reservoirs behind hydroelectric dams. However, storage can also be used to smooth out the net 

load facing nuclear facilities. A carbon tax facilitates early removal of coal-fired capacity, which 

is replaced by low-emissions gas plants. It is only when the carbon tax exceeds $125/tCO2 that 

wind enters the system, although wind is displaced by nuclear power if that option is permitted. 

Although upfront costs of adding nuclear capacity are prohibitive, nuclear outcompetes wind 

because wind farms have low capacity factors and, importantly, because a great deal of gas-

plant capacity is required to support wind, something avoided when nuclear energy is added. 

Finally, an intertie with British Columbia is beneficial because of the support it provides for 

wind and nuclear energy, but the role of natural gas is more important in facilitating a transition 

to lower system-wide carbon dioxide emissions.  

 

Key Words: renewable energy, nuclear power, transmission capacity, energy storage 

JEL Categories: Q42, Q54, Q48, Q58  



Introduction 

A carbon tax is viewed by many as an economically efficient means to incentivize 

carbon-reducing investments in electrical generating systems that might include natural gas, 

wind and nuclear assets. Along with growing demand for electricity and a desire to reduce 

greenhouse gas emissions, there has been a renewed discussion about the role nuclear power 

might need to play in meeting carbon dioxide emission reduction targets in many jurisdictions. 

However, recent concerns related to the failure of the Fukushima Daiichi nuclear power plant in 

Japan to withstand an earthquake and tsunami has reduced society’s already low confidence in 

the safety of nuclear power. As a result, renewable sources of electrical generation, such as 

wind, are seen as a better alternative to fossil fuel sources of energy for safely generating 

electricity and reducing CO2 emissions.  

Increasing reliance on wind generation poses many challenges for electrical system 

operators, because of the variable nature of wind, lack of storage, need for backup generation, 

and transmission constraints and costs of building additional transmission capacity. Wind 

speeds vary considerably and sometimes unexpectedly within an hour, throughout the day or 

season, and even from year to year. The intermittent nature of wind requires that wind 

generation be supplemented by fast-ramping backup generation from open-cycle gas turbine 

(OCGT) and/or diesel power plants; this results in significant CO2 emissions from these plants 

due to more frequent starts and stops and operation at less than optimal capacity (Prescott and 

van Kooten 2009). The need for fast ramping technologies is magnified when there is 

inadequate transmission capacity (Maddaloni et al. 2008). However, an ability to store 

intermittent wind-generated power behind hydroelectric dams, which are also relatively fast 
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ramping, can compensate for variability of wind, solar, wave and tidal energy sources. 

Nuclear power plants are an alternative means for reducing CO2 emissions from 

electricity generation. They have high capacity factors and other operating characteristics that 

allow them to substitute for coal-fired and closed-cycle gas turbine (CCGT) base-load facilities 

that meet the bulk of a system’s load. Indeed, an MIT study (Deutch et al. 2009) recommends 

that, if significant reductions in global CO2 emissions are needed to stabilize the climate, 

installed capacity will need to increase from the current 100 GW to 300 GW in the United States 

by 2050 and from 340 GW to 1000 GW globally. Despite finding that nuclear power could be 

competitive with coal and natural gas, and even before the nuclear disaster in Japan, the MIT 

study found that their target was far from being realized.     

From an environmental standpoint, wind and nuclear energy have several drawbacks. 

Wind turbines are considered visually unappealing, turbine noise has been linked to health 

concerns and wind farms kill many birds, including raptors and other birds that are considered 

species at risk. Further, because wind turbines and wind farms are scattered across a vast 

landscape, construction of costly additional transmission capacity and associated spillovers 

constitute obstacles to political acceptability. On the other hand, disposal and transportation of 

nuclear waste, and fears associated with a potential nuclear accident, terrorist attack and 

nuclear proliferation, are major drawbacks of nuclear power (Deutch et al. 2009). In this paper, 

we abstract from these externalities and focus solely on the externality associated with CO2 

emissions. In this way, we can examine optimal investment in and decommissioning of 

generating assets in response to market incentives that increasingly penalize fossil fuel 

production of electricity.  
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We focus on the Alberta electricity system because it has a high proportion of fossil fuel 

generating assets, the reduction or elimination of which would result in substantial CO2 savings. 

Further, there is the potential to link to British Columbia via an existing transmission link. The 

advantage of the interprovincial intertie is that BC is dominated by large-scale hydroelectric 

assets, so that wind power generated in Alberta can be easily stored in BC reservoirs. Currently 

most of Alberta’s electricity needs are met by plants that burn coal or natural gas, with minor 

production from hydroelectric, biomass and, more recently, wind sources. While there is 

interest in technologies such as geothermal, expanded biomass and solar, these technologies 

will not likely play a significant role in Alberta’s energy sector in the foreseeable future.1

The objectives of the current research are, therefore, to (1) investigate the potential to 

reduce CO2 emissions and make wind energy more attractive by exchanging power between 

British Columbia (where variable wind energy can be stored) and the Mid-Columbia (MidC) 

region in the United States; (2) analyze the impact that varying levels of CO2 taxes will have on 

Alberta’s optimal generation mix; and (3) examine the potential of nuclear power as an 

alternative energy source. In doing so, we also consider how the system costs are impacted and 

the extent to which CO2 emissions can be abated. To assess these objectives, a mathematical 

programming model is developed for the Alberta electricity grid that has the ability to connect 

to the BC and MidC grids. The model builds upon earlier work by Benitez et al. (2008) and 

 In 

response to an increasing load and growing environmentalism related to the high CO2 emissions 

from oil sands production, wind and nuclear alternatives to coal and natural gas are increasingly 

seen as viable options.  

                                                      
1 Geothermal sites are limited, while solar suffers from the same problem as wind, namely 
intermittency, plus much reduced output during winter months because of its northern location. 
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Scorah et al. (2012).  

Methods 

The costs and benefits of introducing wind power into an electricity grid depend on the 

system’s generating mix. Since the Alberta electric system is dominated by fossil fuel 

generation, CO2 emissions can be reduced at relatively low cost as wind penetrates the grid. As 

Scorah et al. (2012) find, these benefits are enhanced by trading power with British Columbia. 

The objective function used by these authors was to minimize the cost of producing electricity. 

Along with the device of excessively high ramp rates for coal and CCGT assets, minimization of 

costs was used to force trade between the two provinces. In the current study, we extend their 

modeling approach to include trade with the U.S. and use price differentials to incentivize trade 

between regions. In addition, in the mathematical programming model that we develop a 

carbon tax is used to promote decommissioning of fossil fuel assets and investment in wind 

farms and/or nuclear facilities that have little or no emissions. 

Although Alberta’s power system is completely deregulated, for convenience it is 

assumed the Alberta Electric System Operator (AESO) allocates generation across assets based 

on knowledge about load and power output from must-run assets, including wind. The AESO 

also chooses how much electricity to import or export across interties to the U.S. (MidC) and 

British Columbia; this decision is based on the prices in the various jurisdictions and 

transmission line capacities (discussed below). Finally, the authority also decides on the 

decommissioning of extant fossil-fuel generation assets and investment in new (wind, nuclear 

or alternative fossil-fuel) assets; thus, the authority can invest in assets which are assumed to 

appear instantaneously at the beginning of the one-year time horizon. In essence, the AESO is 
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assumed to maximize annual profit subject to load, trade and engineering constraints.  

The profit function can be written as follows:  

(1) ( )
( )
( )∑ ∑∑∑

= ∈
∆−+





















−−−+

−−−
+−+−=Π

T

t i
iii

MIDBCk tktAtktk

tktktAtA

i
itiiittA Cda

XPPP

MPPP
QbOMDP

1 ],[ ,,,,

,,,,
, )(

)(

)(

δ
δ

τϕ

 

where Π is profit ($); i refers to the generation source (viz., natural gas, coal, nuclear, wind, 

hydro); T is the number of hours in the one-year time horizon (8760); Dt refers to be the 

demand or load that has to be met in hour t (MW); Qti is the amount of electricity produced by 

generator i in hour t (MW); OMi is operating and maintenance cost of generator i ($/MWh); and 

bi is the variable fuel cost of producing electricity using generator i ($/MWh), which is assumed 

constant for all levels of output. We define Pj,t to be the price ($/MWh) of electricity in each 

hour, with j ∈ {A, BC, MID} referring to Alberta, British Columbia and MidC, respectively. While 

Alberta and MidC prices vary hourly, the BC price is fixed at $90/MWh. Mk,t refers to the 

amount imported by Alberta from region k ∈{BC, MID} at t, while Xk,t refers to the amount 

exported from Alberta to region k; δ is the transmission cost ($/MWh).  

In addition, Ci refers to the capacity of generating source i (MW). The last term in (1) 

permits the addition or removal of generating assets, where ai and di refer to the annualized 

cost of adding or decommissioning assets ($/MW), and ∆ Ci is the capacity added or removed. 

For wind assets, ∆ CW is measured in terms of the number of wind turbines that are added (no 

reduction in numbers is permitted), each with a capacity of 2.3 MW. Given that wind energy is 

non-dispatchable (‘must run’), a sink is assumed available in each period (denoted St) where 

excess energy can be directed or retrieved if the system cannot respond quickly enough 
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because of extreme variability in wind power output from one period to the next. Further, Ri is 

the amount of time it takes to ramp production from plant i. Transmission between Alberta and 

BC, and Alberta and MidC, is constrained depending on whether power is exported or 

imported; the import and export constraints are denoted TRMk and TRXk, respectively, with k 

defined above. Finally, τ is a carbon tax ($ per tCO2) that we use to incentivize removal of fossil 

fuel capacity and entry of renewable or nuclear capacity, and φi is the amount of CO2 required 

to produce a MWh of electricity from generation source i. 

Objective function (1) is maximized subject to the following constraints: 

(2) Demand is met in every hour: ( )∑ ∑ =∀≥−−+
∈i MIDBCk

tttktkit TtDSXMQ ...,,1,
],[

,,,  

(3) Ramping-up constraint: Tti
R
C

QQ
i

i
itit ,...,2,,),1(, =∀≤− −  

(4) Ramping-down constraint: Tti
R
C

QQ
i

i
itit ,...,2,,),1(, =∀−≥− −  

(5) Capacity constraints: Qt,j ≤ Ci, ∀ t,i  

(6) Import transmission constraint:  Mk,t ≤ TRMk, ∀ k,t  

(7) Export transmission constraint: Mk,t ≤ TRKk, ∀ k,t 

(8) Non-negativity: Qt,i, Mk,t, Xk,t ≥ 0, ∀ t,i,k  

In any given hour, electricity can only flow in one direction along a transmission intertie. 

To model this constraint requires the use of a binary variable for each intertie in the model. To 

avoid such a nonlinear constraint, we assume that TRMk = TRXk = TCAPk, ∀𝑘, although this 

applies only to the Alberta-BC intertie, and then employ the following linear constraint to limit 
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the flow of electricity to one direction: 

(9) Xk,t + Mk,t ≤ TCAPk,t, ∀ k,t. 

Some 1200 GWh of hydroelectricity is produced annually in Alberta, with more than 

70% constituting run-of-river output that is non-dispatchable. The remainder is generated by 

two dams (Bighorn and Brazeau) with a combined generating capacity of 475 MW; however, 

their combined capacity factor is less than 10% as the dams are primarily used for flood control. 

In the model, therefore, hydroelectricity is treated primarily as must run (and subtracted from 

load), although a small subcomponent of the model simulates the operation of a hydro facility; 

thus, the system has some capacity to store wind generated electricity. A description of the 

hydroelectric subcomponent of the model is found in Louck et al. (1981). 

The startup and shut down of individual generators is not modeled. It is assumed that all 

generators of a given type operate efficiently, with only the marginal generator’s output 

fluctuating (ramping) up and down as needed. No effort is made at this time to model the 

change in emissions intensity that results when a (marginal) generator operates below its 

optimal rated capacity. Generators that are not needed are removed, although 

decommissioning of capacity is assumed to be continuous – ∆Ci is continuous and not lumpy. 

Further, the added costs of shutdown and startup of thermal power plants associated with 

wind variability are not taken into account. 

The decision variables in the model are Qti, Mk,t, Xk,t and ∆Ci, including ∆ CW which is 

determined by increases in the number of wind turbines beyond those currently in place. 
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Data 

The Alberta electricity grid currently has 6240 megawatts (MW) of coal capacity, 3800 

MW of natural gas-fired base-load capacity, 1500 MW of peak-load gas load plants, 310 MW of 

biomass generation, approximately 900 MW of installed hydroelectric capacity, and 805 MW of 

installed wind capacity. As noted above, 425 MW of hydro capacity is must run, while the 

operation of the reservoirs generates very little energy throughout the year; hydroelectric 

power generation depends on river flows, reservoir capacities and other uses of water. For 

convenience, we treat biomass generation as equivalent to coal.  

Transmission interties exist between Alberta and the BC and MidC regions. Alberta is 

able to export up to 600 MW to BC at any given time, but can only import 760 MW from BC due 

to constraints within the Alberta grid. However, we assume a single transmission capacity 

constraint of 650 MW (for reasons noted above), varying it to examine the impact of potentially 

greater storage on the optimal generating mix. BC is dominated by hydroelectric generation, 

which accounts for 11,000 MW or 92.4% of BC generating capacity, and thus has the capacity to 

store energy from Alberta. Alberta may also import or export up to 300 MW of electricity from 

the MidC region of the U.S. This system is made up of coal-fired, hydroelectric, nuclear and 

renewable (mainly wind) generating resources. Load data used in the model are for Alberta, 

while BC and MidC prices are used along with Alberta prices to determine movements along the 

interties.  

Load and price information are provided in Table 1. Although not used in the model, 

2008 load data for BC are also provided in the table. Notice that the peak load in Alberta is only 

57% higher than the minimum load, while BC’s peak load is 130% higher. One possible 
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explanation relates to the composition of the industrial sector, which is the major consumer of 

energy in the two provinces. Alberta is more heavily industrialized because of its much larger 

energy sector. Since large industrial plants operate around the clock, electricity demand varies 

little between daytime and nighttime. In BC, the forest sector is a major power consumer but 

many sawmills do not operate around the clock, especially during times of low demand, plus 

sawmills and pulp mills generate some of their own electricity using residual biomass. 

Table 1: Load and Price Data used in Model, 2010a 
    Alberta British Columbia Mid-Columbia 
Load (MW) 

   
 

Average 8,188   7,005 - 

 
Maximum 10,227 10,855 - 

 
Minimum 6,524   4,703 - 

Energy Price ($/MW) 
  

 
Average 90 75 56 

 
Maximum 1,000 - 127 

 
Minimum 0 - 0 

a For BC, load data are for 2008 (the latest year available) and a price is assumed. 

If wind power is non-dispatchable or must run, remaining generators in the system must 

ramp up and down to meet the adjusted load, where wind generated power is subtracted from 

load. The general effect of integrating wind into an existing grid is to increase the variability of 

the adjusted load. This is illustrated in Figure 1 where Alberta load and wind-adjusted load for 

the first ten days in January 2010, and the last ten days in December 2010, are provided in ten-

minute intervals. During 2010, installed wind capacity rose from 501 MW to 715 MW, or by 

42.7%; if we define wind penetration as installed capacity divided by peak load, wind 

penetration increased from 5% to nearly 7% throughout the year. Not surprisingly, the wind-

adjusted load in the beginning of 2010 is impacted less by wind resources than that at the end 
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of the year – the wind-adjusted load is more variable at the end of 2010 (Figure 1b) than it is at 

the beginning (Figure 1a). As wind penetration increases, existing coal and some natural gas 

assets have more difficulty following the wind-adjusted load than the normal load. 

 

 
Figure 1: Alberta Load and Wind Generation at 10-minute Intervals, First 10 Days in 2010 (panel a) and 

Last 10 Days in 2010 (panel b)  

It is important to note that there are extended periods when the wind does not blow, 

and no wind power comes onto the grid. At the beginning of 2010, for example, there was no 

wind from 6 pm on January 2 until 5 am the next morning, and again from 10 minutes after 

midnight on January 4th until the evening of January 6. Since wind farms in Alberta locate in the 

south, just east of the Rocky Mountains, to take advantage of prevailing winds, even if wind 
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capacity had been greater, there would not have been additional wind generated electricity. 

This is seen in the late December data, when 214 additional MW of capacity were available: 

wind power output began to collapse in the late afternoon of December 29, was non-existent 

for the entire morning of December 30, and did not begin to pick up again until the evening of 

December 31; in essence, there was little or no wind for a period of 50 hours (Figure 1b).    

In addition to the information discussed above (transmission constraints, prices, load, 

wind output), the model takes into account some run-of-river hydroelectricity (produced by a 

series of dams on the Bow River). The non-wind, non-dispatchable run-of-river assets account 

for an average 211.6 MW of electricity per hour that ranges from 60 to 360 MW.2

Finally, information on construction and operating costs, emissions and ramping rates 

for generators is required for the model. This information is provided in Table 2. The cost of 

installing new generating capacity or decommissioning extant capacity is amortized to an 

annual basis using a 10% rate of discount. Newly constructed nuclear, coal and gas plants are 

assumed to last only 30 years and wind turbines 20 years. This intentionally biases fixed costs 

against plants that have a longer life span, such as nuclear plants that are still operating after 40 

years.  

  

The AESO (2010) estimates the system ramping rate to be around 100 MW per 10 

minutes, although they vary by asset (see Table 3). As indicated in Table 3, the majority of coal 

and gas plants cannot ramp any faster than 5 MW per 10 minutes. However, the average delay 

to a response for dispatch was about four minutes; this also needs to be taken into account in 

                                                      
2 In the Alberta system, there also exists must-run power co-generated with heat that uses natural gas 
as an energy source. Lacking data on co-generation, we do not include this aspect except via the 
system’s ramping rates, which are discussed below. In essence, ramping rates are slower than would 
normally be the case for gas plants to account for co-generated power.  
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determining the ramp rate. Based on this information and that in Table 3, we calculate the 

ramp rates for different sorts of assets in the last column of Table 2, but then on an hourly basis 

and as a percent of capacity.  

Table 2: Construction and Operating Costs ($2010), Carbon Dioxide Emissions, and Ramp Rates of 
Various Generating Assets 

 
Years 

to 
build 

Construction Costsa  
 Variable Costs 

($/MWh)b 
 
 

Emissions 
(tCO2/ 

MWh)c 

Ramp rate 
% of 

capacity 
per hourd Asset 

Overnight 
($/kW) 

Decommission 
as % of 

overnight 

 

O&M Fuel 
Nuclear 7 5400.0 42.8  11.00 7.70 0.020 1.0 
Biomass 2 1280.0 22.2  6.60 92.70 0.250 2.5 
Coal 4 1777.0 24.0  6.60 5.43 0.850 2.5 
Wind 3 1300.0 n.a.e  0.17 0.0 0.015 n.a.e 
Hydro 4 2100.0 n.a.e  3.64 1.01 0.009 n.a.e 
CCGT 3 965.4 10.0  4.76 13.97 0.450 7.5 
OCGT 2 694.8 10.0  4.65 14.03 0.450 12.5 

Notes: 
a Overnight costs are the total costs of labor, materials, etc. required to build the facility immediately or 
overnight. Hence, they need to be adjusted for the construction time. As an approximation, divide the 
overnight cost by the time required to build the plant and then discount the stream of costs to the 
present. For biomass, the overnight cost is that of converting coal-fired generation to biomass. Asset 
decommissioning costs are taken to be a percent of overnight construction costs. For nuclear, Fox (2011) 
uses $3037.2/kW but The Economist (2012) reports the figure provided here as the most costly one 
found in actual construction. Remaining data are from van Kooten (2010, 2012) and Fox (2011). 
b Fuel and O&M costs for nuclear power from http://world-nuclear.org/info/inf02.html  (accessed March 
22, 2012). For gas plants, O&M costs are calculated from Northwest Power Planning Council (2002). 
Calculated values of $3.90/MWh and $3.81/MWh for 2002 are inflated by the CPI to get $4.76 and 
$4.65/MWh for 2010 for CCGT and OCGT plants, respectively. Fuel prices for coal and gas are U.S. prices 
for Mountain region for December 2010 (respectively, $1.59 and $4.09 per million btu) multiplied by 
3.41442594972 to convert to $/MWh; higher price for OCGT comes from Pacific region gas price of 
$4.11/mil btu. Price data are from U.S. Energy Information Administration (2012, p.106). Remaining data 
are from van Kooten (2012). 
c Source: Calculations based on van Kooten (2010, 2012) and Fox (2011) 
d Estimates based on information in Table 3 and total system ramp rate of 600 MW per hour. 
e not applicable. 

http://world-nuclear.org/info/inf02.html%20accessed%20March%2022�
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Table 3: Distribution of Maximum Ramp Rates for 67 Assets Participating in the Alberta Marketa  
Ramp Rate 
(MW/Minute) ≥30 25-30 20-25 15-20 10-15 5-10 ≤5 
Number of assets 4 1 1 0 9 24 28 

Notes: 
a This refers to the current distribution and is based on bidding information for assets making non-zero 
offers and participating in the market since 2008. 
Source: AESO (2010, p.13) 

Model Results 

The Government of Canada (2011) aims to reduce its greenhouse gas emissions by 17% 

from 2005 levels by 2020 as inscribed in the December 2009 (non-binding) Copenhagen Accord. 

This implies that Canada’s CO2e emissions would need to be reduced from 731 Mt in 2005 to 

607 Mt in 2020. Coal currently accounts for 93 Mt of emissions, representing 78% of the 

emissions from the electricity sector. Eliminating coal-fired power will go a long way to meeting 

this objective. However, as a member of the G8, Canada also implicitly agreed to reduce its 

emissions of CO2e by 80% from 2005 levels at a meeting in L'Aquila, Italy, on July 8, 2009. 

To better understand how Alberta’s optimal generating mix might respond to climate 

mitigation policies that aim to achieve these targets, and whether the latter target is even 

feasible, we employ a carbon tax on emissions in the electricity sector that varies from $0 to 

$200 per tCO2. We investigate scenarios with zero, moderate and high transmission capacity 

along the Alberta-BC intertie and a situation where nuclear energy is allowed into the mix in 

addition to wind. The latter possibility is included to determine whether, with a very severe 

emission reduction target (very high carbon tax), it might be possible to reduce CO2 emissions 

by 80%. In essence, we wish to determine whether nuclear energy can compete with wind and 

whether nuclear power is needed to attain the most severe targets. 
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Capacity and Generation 

Consider first the impact of the carbon tax on optimal installed generating capacity, or 

the generation mix, and then the amount generated by each source during the year. In Table 4, 

the existing (initial) generating mix is provided in the first row, followed by results for the case 

where no trade is possible with jurisdictions adjacent to Alberta and then the case where there 

exist interties with the United States (300 MW) and British Columbia (1300 MW); the low 

transmission case (650 MW intertie capacity between Alberta and BC) is not illustrated in the 

table. Notice that the optimal generating mix with no carbon tax has less coal than the existing 

mix. This is because developments in anticipation of future growth and the need for backup 

reserves are not taken into account in this exercise.  

Table 4: Optimal Generating Capacities, Various Scenarios, MW 
 Item Nuclear Coal CCGTa OCGTa Wind 

Initial 0 6550 3800 1500 805 
No trade between Alberta and BC 

  $0  0 4536 3800 1500 805 
$50  0 0 7550 2290 805 

$100  0 0 8020 1820 805 
$150  0 0 7980 1855 6365 
$200  0 0 8075 1765 11,380 

$150(Nuke) 5945 0 3800 90 805 
$200(Nuke) 6910 0 3015 0 805 
Alberta-BC trade along 1300MW-capacity transmission intertie 

$0  0 4100 3800 1500 805 
$50  0 0 7565 1500 805 

$100  0 0 7970 265 805 
$150  0 0 6370 1865 9940 
$200  0 0 6630 1605 11,500 

$150(Nuke) 2810 0 3800 1630 805 
$200(Nuke) 6330 0 1965 0 805 

a CCGT and OCGT refer to base-load and peak-load facilities, respectively.  

In the table, the carbon tax increases in $50/tCO2 increments. Coal is driven out of the 
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generating mix even at a low tax of $25/tCO2, but that is only because gas plants are relatively 

cheap to build and operate because of low fuel costs.3

A similar story can be told when Alberta is able to trade energy with British Columbia. In 

this case, however, 1600 MW of installed gas plant capacity can be shed in exchange for 3575 

MW of extra wind capacity in the $150/tCO2-tax scenario. Interestingly, for the $200/tCO2-tax 

scenario, 10,695 MW extra wind capacity is installed, but only 1600 MW of gas capacity is 

 Once the carbon tax is taken into 

account, CCGT plants and even OCGT plants operate at a lower cost than coal plants, and that is 

mainly due to declining gas prices as a result of unconventional gas finds. In the no trade 

situation, total natural gas capacity rises to 9840 MW (although its composition between CCGT 

and OCGT changes slightly as a result of different starting points in the solver’s search 

algorithm). There is no increase in wind capacity until the carbon tax reaches $150/tCO2; then 

the number of wind turbines increases from 350 to nearly 2800, and then to almost 5000 as the 

tax goes to $200/tCO2. However, there is no reduction in installed gas generating capacity as 

gas is needed to backstop unreliable wind power. However, when nuclear power is permitted in 

the generation mix, wind no longer comes into the mix at carbon taxes of $150/tCO2 or more, 

while natural gas capacity falls. Nonetheless, natural gas plants are necessary; at a tax of 

$200/tCO2 the increase in nuclear capacity no longer replaces natural gas capacity one-for-one 

as it did when the tax was $150/tCO2. This is because natural gas plants can ramp up and down 

much faster than nuclear plants, and this ramping ability is required to track swings in net load, 

which are somewhat aggravated by the remaining wind in the system (see Figure 1).  

                                                      
3 If the gas price is increased to levels seen early in the 2000s, then coal is not driven out of the mix at a 
tax of $25/tCO2, although coal disappears once the tax hits $50/tCO2.  
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shed.4

Next consider the profile of annual generation. This is provided in Figure 2 for all three 

scenarios and various levels of the carbon tax. The impact of the intertie is limited because the 

maximum amount of energy that can be transmitted annually along a high-capacity Alberta-BC 

intertie is only 11,388 GWh (i.e., for the scenario in panel c of the figure) and that includes 

flows in both directions (so the contribution to generation in Alberta will be much lower). 

Therefore, the story is much the same across the three panels of Figure 2, and supports the 

observations noted in the previous paragraphs. When nuclear power is excluded, installed wind 

generating capacity and output will increase, but natural gas is still required to backstop 

intermittent wind. This is only mitigated somewhat as the capacity of the intertie is increased. 

Clearly, the natural variability of wind severely constrains its contribution to the Alberta 

electrical grid.  

 Hydro resources in British Columbia and natural gas are needed to backstop erratic wind 

power output, but reliance on the former is limited by the transmission constraint (and 

potentially hydroelectric operating constraints). 

When nuclear energy is allowed to enter the grid, it enters at a lower carbon tax than 

wind, namely, at $125/tCO2 rather than $150/tCO2, although both are very high thresholds 

given that the price of carbon on the European exchange in early 2012 was less than $20/tCO2. 

Nonetheless, the contribution of gas to annual generation is much lower when nuclear plants 

are present than with optimally-determined wind capacity. Further, as the Alberta system is 

increasingly allowed to import to or export from British Columbia, the need for natural gas 

declines, but it does not disappear altogether. What is happening? 

                                                      
4 There is a 5000-turbine limit in the model so that only 11,500 MW can ever be installed.  
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Figure 2: Annual Generation by Asset Type, Various Scenarios and Taxes, GWh 
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In effect, nuclear power plants can ramp only very slowly. Thus, BC hydro reservoirs act 

as a large battery that stores energy when nuclear power output exceeds net Alberta load and 

draws it down when the net load exceeds nuclear output. Of course, the small hydroelectric 

storage capacity that does exist in Alberta (as well as the intertie to the U.S.) also facilitates this 

function. The contribution of gas plants is limited to situations where this operational 

imperative is constrained. This is evident in Figure 2.  

Finally, we can look at the annual level of exports and imports along the Alberta-BC 

intertie. In the model, these are driven by the differences in prices between Alberta and BC. 

While the BC price is fixed in every hour at $75/MWh (and there is a small transmission cost), 

average hourly prices in Alberta fluctuate, as indicated in Figure 3 for different seasons during 

the year. Not unexpectedly, there is a spike in prices during peak hours, most notably between 

8 a.m. and 10 a.m. and again in the late evening. This pattern is primarily the result of electricity 

demand for lighting and entertainment, as opposed to heating. Given the fixed BC price, it is 

clear that, for much of the day, Alberta will export to BC, at least until the carbon tax raises 

Alberta production costs to the point where it pays to import power from BC. In practice, 

however, the BC system operator, BC Hydro, will employ different prices throughout the day to 

maximize the rents from exchange with Alberta, but the current model does not take this into 

account. This then explains some of the results that follow. 

Alberta’s total annual exports and imports of power to British Columbia are provided in 

Figure 4. As the carbon tax rises and more wind or nuclear enters into the Alberta mix, the 

province goes from being a major exporter of power to British Columbia to a major importer. 
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The main reason is that the carbon tax applies to exports of Alberta’s fossil fuel generated 

power but does not apply to carbon-free imports of hydropower from BC.    

 
Figure 3: Average Hourly Alberta Prices ($/MWh), Various Seasons, 2010 

Further, despite large amounts of variable wind power generation at higher carbon 

taxes, there remains significant gas output (Figure 2). When there is a drop in wind generation, 

the increase in net load is better met by imports from BC, while, if there is an increase in wind 

generation, the reduction in net load is best met by backing off natural gas power output. The 

same is true in the case where nuclear power is dominant – there is still sufficient gas 

generation in the system (≥1965 MW of capacity) that can be used to cover reductions in net 

load that cannot be covered by ramping nuclear plants, with imports and gas (in that order) 

covering any shortfall. In this regard, it is important to remember that the capacity of the 

intertie represents 17.5% at low capacity and 35.1% at high capacity of the difference between 

annual peak and minimum load in Alberta (Table 1).  
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Figure 3: Exports and Imports along the Alberta-BC Intertie for Transmission Capacities of 650 MW 

(panel a) and 1300 MW (panel b), Various Scenarios and Carbon Taxes, GWh 

Reducing Carbon Dioxide Emissions 

Emissions of carbon dioxide for each of the scenarios in the model are provided in Table 

5. Base-line (carbon tax = 0) emissions for the three transmission scenarios vary by nearly 10 

percent, whereas one might have expected them to be equivalent or decline with increased 

intertie capacity. As is evident from the prices in Table 1, trade between Alberta and the U.S. is 
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capacity of the Alberta-MidC intertie is not varied across scenarios, although imports do 

fluctuate slightly from one scenario to another.  

Imports from the U.S. and from BC lower Alberta’s greenhouse gas emissions, while 

exports to BC increase them. Compared to the case of no connection between jurisdictions, 

when the capacity of the Alberta-BC intertie is at 650 MW the reduction in CO2 emissions from 

U.S. imports appears to offset the increase in emissions from exports to BC; this is despite the 

fact that Alberta exports are at their limit. Coal-fired generation is about 9000 GWh higher in 

the no trade versus low-level trade scenario, as is clear from a comparison of panels (a) and (b) 

in Figure 2. This is because, while some exports come from wind-generated power, trade 

appears to facilitate a partial switch from coal plants to low-emissions gas plants even when 

carbon is not priced. A jump to the higher intertie-capacity scenario doubles exports to BC 

when the carbon price is zero. However, as indicated in Figure 2(c), the increase in exports from 

5694 GWh to 11,388 GWh comes from coal-fired plants leading to an increase in overall 

emissions, even compared to the no trade scenario. This is seen in Table 5. 

Table 5: Total Emissions under Various Scenarios and Carbon Taxes, Mt CO2 

Carbon 
tax 

No Trade 
 

Low intertie capacity 
 

High intertie capacity 

Wind Only 
Wind & 
Nuclear  Wind Only 

Wind & 
Nuclear  Wind Only 

Wind & 
Nuclear 

$0 47.1 47.1 
 

45.1 45.1 
 

49.4 49.4 
$25 30.6 30.6 

 
32.0 32.0 

 
34.4 34.4 

$50 29.6 29.6 
 

31.3 31.3 
 

34.0 34.0 
$100 29.4 29.4 

 
28.9 28.9 

 
30.9 30.9 

$125 29.4 20.6 
 

27.5 14.6 
 

26.0 15.4 
$150 24.8 7.0 

 
19.2 3.9 

 
16.4 3.7 

$200 21.2 3.9 
 

17.7 2.1 
 

15.5 1.7 
 

As the capacity of the Alberta-BC intertie increases from 0 MW to 650 MW and then 
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1300 MW, respective reductions in CO2 emissions of 55%, 60% and 68% might be attainable if 

we rely only wind power. These are significant reductions, but they can be partly attributed to 

ideal trade conditions, a potentially unacceptable carbon tax, and a huge increase to 5000 wind 

turbines of 2.3-MW capacity across the southern Alberta landscape (see McWilliam et al. 2012). 

Further, such savings occur in a system that is currently heavily reliant on fossil-fuel generation, 

especially coal – it is like picking low-hanging fruit. What is most surprising, however, is that 

carbon dioxide emissions in Alberta’s electricity sector can be reduced by an incredible 90 

percent or more if large investments in nuclear energy were forthcoming.  

Finally, the costs of reducing CO2 emissions are provided in Figure 5. Although the 

availability of substantial intertie capacity (1300 MW) between Alberta and BC lowers the costs 

of reducing greenhouse gas emissions (compare thick solid and dashed lines, thin solid and 

dashed lines), the shift from wind to nuclear power (thick versus thin solid lines, thick versus 

thin dashed lines) leads to much greater ‘bang for the buck’ – the same tax moves one closer to 

the carbon free objective. 

 
Figure 5: Average Costs of Reducing CO2 Emissions, Wind vs Nuclear and No Trade vs High Capacity 
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Wasted Renewables 

One of the most pernicious objections to the integration of carbon-free renewable 

sources of energy into an electrical grid is the potential that renewable energy of one form 

simply replaces renewable energy of another form, leading to ‘wasted’ renewable energy. For 

example, if wind energy displaces run-of-river hydroelectric energy elsewhere in the system, 

then the hydropower not produced constitutes a wasted renewable. One also wastes 

renewable energy if nuclear power is dispatched to another jurisdiction, but it results in the 

displacement of wind power in that jurisdiction.  

There are other instances of waste. For example, renewable energy is essentially wasted 

if it fails to displace output from a fossil fuel plant one for one. This might occur if a coal-fired 

power plant cannot reduce output quick enough to follow a decline in net load caused by 

increased power from the system’s wind farms. In this case the wind energy is not really 

needed, and thus considered wasted. Measuring the extent of wasted renewables is difficult. 

In Table 6, we provide some indication of the magnitude of wasted renewable in the 

first sense – the extent to which one renewable energy source displaces an equal amount of 

power generated by another renewable source. This is done by comparing the hydroelectric 

energy that the Alberta system could potentially produce with what it actually does produce. 

Total system demand is about 68,000 GWh. As indicated in the table, when the carbon tax is 

less than about $100/tCO2, wasted renewables are negligible. Even when no trade occurs, 

wasted renewables amount to only 0.5% by our measure, and become negligible as the intertie 

capacity increases. This conclusion may, however, be an artifact of the system that we model. 

Alberta has little in the way of renewable generating capacity, so little indeed that the effect of 
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the current 7% wind penetration makes little difference to the operation of the system. 

Likewise, hydro capacity is small and is little impacted by the variability in wind. In this model, 

therefore, wasted renewables are not a problem and they are unlikely to be one until wind 

penetration rises to 20 percent or more (Lund 2005). 

Table 6: A Measure of Potential Wasted Renewables as a Result of Integrating Carbon-free 
Generating Assets into an Electrical Grid, GWh 

 
No Alberta-BC trade  Low capacity intertie  High capacity intertie 

Carbon 
tax Wind Only 

Wind & 
Nuclear 

 
Wind Only 

Wind & 
Nuclear 

 
Wind Only 

Wind & 
Nuclear 

$0  7.40 7.40  8.36 8.36  6.96 6.96 
$25  0.65 0.65  0.69 0.69  1.19 1.19 
$50  0.62 0.62  0.65 0.65  0.75 0.75 
$100  0.63 0.63  0.46 0.46  0.46 0.46 
$125  0.63 1.79  0.46 0.46  0.46 0.46 
$150  71.86 144.56  26.10 1.26  5.12 0.44 
$200  303.03 421.72  100.35 58.78  30.89 0.35 

 

Concluding Discussion  

In an attempt to reduce CO2 emissions from the generation of electricity, many 

governments are considering implementing economic incentives, whether a carbon tax or a 

cap-and-trade scheme. With the generating mixes of many electrical grids dominated by fossil 

fuels, this will result in either a substantial increase in the cost of generation or a significant 

transformation to other, lower CO2 emitting technologies. Generation of power from 

hydroelectric dams, wind turbines and nuclear power plants may be seen as viable alternatives. 

A carbon tax on power generation in Alberta clearly leads to increased reliance on lower 

CO2-emitting sources of energy for generating electricity, especially greater reliance on natural 

gas in lieu of coal. Only when the carbon tax exceeds about $100/tCO2 does an optimal 



25 
 

generation mix rely on a great deal of wind energy instead of natural gas. Yet, at a very high 

carbon tax, natural gas capacity increases over what it would be in the absence of wind because 

gas plants are needed to backup intermittent wind resources. Thus, while the amount of 

electricity generated from natural gas may fall with increasing wind penetration, gas plant 

capacity must be increased.  

When nuclear power is permitted to enter the generating mix, it replaces wind almost 

entirely. This is the case even though the upfront costs of building nuclear capacity are 

extremely high. Compared to wind-generated power, there are significant savings with nuclear 

power from not having to build gas plant capacity alongside wind. This cost difference is often 

ignored in studies of nuclear energy.  

It is frequently assumed that high-voltage transmission interties are the answer to 

intermittent wind energy. However, the results in this study suggest that natural gas and gas 

prices play a much larger role in facilitating intermittent (wind and solar) energy than does 

added transmission capacity. Alberta has pursued a policy of adding to CCGT and OCGT 

capacity. This appears to be a very reasonable response to increased wind-power generating 

capacity, especially if BC is unwilling to share economic rents from storing intermittent energy. 

While high-capacity interties provide some benefit, these do not appear to be as large 

as originally expected. Further, adding transmission lines or increasing capacity of existing lines 

is expensive, and that was something not taken into account here.  

In the current research, the greatest CO2 emission-reduction benefits come from an 

ability to substitute carbon-free nuclear energy for fossil fuels. However, the transition to 

nuclear energy is unlikely to be straightforward because the carbon tax is not about to be raised 
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to $150/tCO2 or higher in the very near future. Rather, the transition will likely take the form of 

a progression from a coal-natural gas mix to reliance solely on natural gas for generation and, 

finally, to nuclear energy – a natural gas to nuclear (N2N) transition. Along the line, wind 

penetration may well increase, but mainly due to subsidies or the result of regulatory 

impediments to nuclear power. Nonetheless, the results of this study provide support to 

proponents of a N2N progression for drastically reducing CO2 emissions. 

A number of issues have not been addressed in our model. One is that British Columbia 

may not have the ability to export unlimited energy to Alberta, as BC may need to enhance its 

hydroelectric and other generating capacity to meet load in the near future (see Sopinka and 

van Kooten 2012). To account for this aspect would require inclusion of a BC model with some 

details regarding the operation of its hydroelectric facilities – water storage and changes in 

generating capacity as reservoir levels vary.  

In addition, as greater wind energy enters the system, prices will undoubtedly change. 

Likewise, BC prices cannot be assumed fixed at every hour, but will vary according to load and 

opportunities for the system operator, BC Hydro, to maximize rents. In the current research, no 

effort was made to model the impact of increased wind output on prices, as wind would likely 

bid into the merit order at zero price (van Kooten 2012), nor was the BC price response 

modeled.  These are left to future research.  
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APPENDIX: Additional Information 

It would appear that, under the Government of Canada’s (2011) regulation for 

generating electricity from coal-fired power plants, the performance standard is an emissions 

intensity level commensurate with that for combined-cycle natural gas turbine (CCGT) 

generation, or 375 tCO2 per GWh of energy. The standard applies to combustion of coal and its 

derivatives, and “from all fuels burned in conjunction with coal, except for biomass.” This leaves 

open the option of blending biomass to the point where the standard is met. 

The following is a table that is based on information from the U.S. Energy Information 

Administration (2012) that was used to derive fuel prices used in the model. 

Table A1: Fuel Prices for Coal and Natural Gasa 

 
Region 

 
Mountain 

 
Pacific 

Year $/mil btu $/MWh 
 

$/mil btu $/MWh 
Natural gas 

    2010 $4.09 $13.97 
 

$4.11 $14.03 
2011 $5.08 $17.35 

 
$4.85 $16.56 

Coal 
     2010 $1.59 $5.43 

 
$2.30 $7.85 

2011 $1.72 $5.87 
 

$2.20 $7.51 
a Coal and CCGT gas prices for Mountain region for 
December 2010 (respectively, $1.59 and $4.09 per million 
btu) are multiplied by 3.41442594972 to convert to $/MWh; 
Pacific region gas price of $4.11/mil btu is used for OCGT. 
Data are from U.S. Energy Information Administration (2012, 
p.106). 
 
Trading hub prices can be found at: http://205.254.135.7/electricity/wholesale/ 
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